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Why biobased economy?
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Energy demand, GHG emissions
and climate change…
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Potential emissions from remaining
fossil resources could

result in GHG concentration levels far
above 600ppm.
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Energy system transformation…

[GEA/van Vuuren et al CoSust, 2012]
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Advancing markets…pushed
by technological progress and

pulled by high oil prices
• Advanced biofuels…(strong economic

perspective)
• Biorefining, biochemicals, biomaterials…
• Aviation and shipping…

• Likely to compete for the same resources…
• Should meet the same sustainability

criteria…(but that is not the case today!)
• Competition or synergy?
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Biomass resources;
potentials <-> preconditions
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2050 Bioenergy Potentials &
Deployment Levels
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[IPCC-SRREN, 2011]

Driving forces, dimensions, scales…
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Key factors
biomass potentials

Issue/effect Importance Impact on biomass
potentials

Supply potential of biomass
supply as estimated in

recent studies
Improvement agricultural management *** 
Choice of crops *** 
Food demands and human diet *** 
Use of degraded land *** 
Competition for water *** 
Use of agricultural/forestry by-products ** 
Protected area expansion ** 
Water use efficiency ** 
Climate change ** 
Alternative protein chains ** 
Demand for biomaterials * 

Demand potential of biomass
demand as estimated in

recent studies
Bio-energy demand versus supply ** 
Cost of biomass supply ** 
Learning in energy conversion ** 
Market mechanism food-feed-fuel ** 

Dornburg et al., Energy &
Environmental Science 2010
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Contributors to land use
change…
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GHG mitigation peformance
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GHG/MJ of major modern bioenergy chains vs.
conventional fossil fuel options

Excluding
(i)LUC
effects;
these can
have
strong
impacts

[IPCC-SRREN, 2011]
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Uncertain!!!

‘depreciation
Carbon losses
over 20 years;
after that iLUC
= zero.

Carbon intensity
fossil ref
excludes upstream
Emissions.
These will increase
(>200 g/MJ
possible)
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GHG emissions per km driven

[Van Vliet et al., 2009]

No CCS CCS
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iLUC; scientific status, gaps
next steps…
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Confrontation
bottom-up vs. top down

iLUC modelling
Key steps iLUC

modelling efforts:

• CGE; historic data
basis

• Model shock, short
term, BAU, current
technology.

• Quantify LUC
• Quantify GHG

implications (carbon
stocks)

Bottom-up insights:

• Coverage of BBE options,
advancements in agriculture,
verification of changes (land,
production)

• Gradual, sustainability driven,
longer term, technological
change (BBE, Agriculture

• LUC depends on zoning,
productivity, socio-economic
drivers

• Governing of forest, agriculture,
identification of ‘’best’’ lands.

[IEA & other workshops, 2011-
2013; pubs under preparation]
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Example: Corn ethanol
Results from PE & CGE models

[Wicke et al., Biofuels, 2012]
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• Controlling (i)LUC
– Increasing efficiency in agriculture, livestock and

bioenergy production
– Integrating food, feed and fuel production
– Increasing chain efficiencies
– Minimizing degradation and abandonment of

agricultural land

• Controlling type of LUC
– Sustainable land use planning (incl. monitoring)
– Excluding high carbon stock and biodiversity areas
– Using set-aside, idle or abandoned agricultural land
– Using degraded and marginal land

ilUC mitigation options…
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IMAGE /
IMAGE –TIMER

PBL

MAGNET
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Bottom-up analysis of
technological learning in
bioenergy & agriculture

UU

1. Improve existing
models, knowledge
and data

2. Better integrate
existing models

Redesigning modelling frameworks & scenario’s

Coordinated 4 year program by Utrecht University
Supported by iLUC mitigation research in many countries.
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Question form:
• Do we have enough modeling capabilities,

methods, data and tools to provide sufficient
answers to policy and the market (on iLUC)?

• Are the right questions being asked to
science? (quantify iLUC vs. mitigation of
iLUC)

• Honesty, limitations, uncertainties and the
science – policy interface…

• What are we trying to govern?; how to
prioritize GHG, energy, land-use, agriculture,
forestry, rural development…
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Policy debate
• Changing perspectives: from iLUC to mitigation.
• Broader support for the view that focus on

biomass/biofuels alone is inconsistent.
• Modernization and efficiency of conventional

agriculture (and livestock essential in itself (!)
• Leads to different perspective from avoiding

problems to achieve synergies (governance land).
• Essential: “incentivise practices that prevent or

mitigate ILUC”; only penalizing leads to stagnation
• Mitigation of iLUC can be translated into extended

sustainability criteria!



13

Copernicus Institute
Sustainable Development and Innovation Management

Contrast:
• Modeling for iLUC factors is only half the science

we need; reactive instead of pro-active concept.
• Biofuel policies also half the policy we need;

mandates without proper preconditions, resulting
in CONFLICTS

Versus

• Interlinked agricultural& biobased economy
policies (agri, clima, energy…).

• Investigate (and implement) Integral land use
strategies (agriculture, BBE, nature, rural
development) to achieve SYNERGIES
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Thanks for your attention
For more information, see:

- Sciencedirect/Scopus  (scientific)

- Google scholar citations  (personal)

- http://srren.ipcc-wg3.de/report  (IPCC)

- www.bioenergytrade.org  (IEA)
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Challenges for science,
business and policy

• Land & natural resources (local – global)
– Integral land use strategies (agriculture, BBE, nature,

rural development)
– Full impact analyses and optimization;
– Include ‘macro’’-themes; iLUC, food security, rural

development, water/biodiversity.
– Governance…

• Drive down the learning curves
– Technologies (fuels, biomaterials, power, carbon

management (CCS)
– Cropping systems
– Logistics, markets, CoC
– Business models & investment.
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[Wit & Faaij, Biomass & bioenergy, 2010]
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Average annual yield growth rate
projections for Europe for the

period 2000-30 for four studies
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Absolute productivity increases and
relative growth rates for the period

1961-2007 and per decade.
Absolute Relative

1961-2007 1961-2007 ‘61-‘69 ‘70-‘79 ‘80-‘89 ‘90-‘99 ‘00-‘07
kg ha-1 y-2

kg animal-1 y-1
% y-1

France Wheat 104 3.6 5.2 2.5 2.5 1.6 -0.9
Rapeseed 40 2.5 1.4 0.3 -0.3 2.1 1.2
Sugarbeet 1024 3.1 3.6 0.2 2.4 1.0 2.8
Cattle 2.8 1.6 0.5 1.2 0.9 -0.1 0.9

Netherlands Wheat 110 2.7 0.7 3.8 1.4 0.5 -0.6
Rapeseed 25 1.0 -0.6 -1.8 -0.1 0.6 0.2
Sugarbeet 489 1.2 2.6 0.1 1.4 -1.9 2.5
Cattle 1.1 0.6 0.7 0.9 2.1 -0.9 -1.0

Poland Wheat 39 1.8 3.6 2.3 4.1 -0.6 1.6
Rapeseed 21 1.4 1.7 0.4 -0.4 -0.6 4.0
Sugarbeet 319 1.2 3.5 -0.5 2.6 1.0 3.7
Cattle 2.5 2.7 3.6 6.1 4.9 0.6 10.1

Ukraine (USSR) a Wheat n.a. n.a. 5.1 1.0 3.6 -4.5 -0.2
Rapeseed n.a. n.a. 3.5 -2.7 -0.4 -7.4 9.4
Sugarbeet n.a. n.a. 9.0 0.3 5.0 -3.2 11.3
Cattle n.a. n.a. 6.3 2.1 2.1 -4.9 1.2

De Wit, et al., RSER, 2012
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Developments in yields and
inputs

Source: FAOSTAT and own calculations

[De Wit et al, RSER 2011]
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Selected remarks on yields
• Yield growth projections in WEC at 0.5-1.5% y-1, are

modest when compared to historic developments between
1961-2007, but seems high compared to developments in
the last two decades. Declining growth rates in the latter
period, explained by an expansion in organic farming, set-
aside obligations and a decoupling of production support.
REFUEL projections (0.4% y-1) for the WEC seem
conservative in this respect.

• Projected growth rates for the CEEC around 1% y-1 – as
projected by FAO (0.9% y-1) and EEA (1.2% y-1) – seem
modest when compared to average growth figures
between 1961 and 2007, even more so when compared to
growth rates prior to 1990 and past 2000.

De Wit, et al., RSER 2012
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Results - spatial production
potential

Arable land available for dedicated
bio-energy crops divided by the
total land

Countries

Low
potential

High
potential

Moderate
potential

< 6,5%
NL, BE, LU, AT,
CH, NO, SE and FI

Potential

6,5%
- 17%

FR, ES, PT, GE,
UK, DK, IE, IT and
GR

> 17% PL, LT, LV, HU, SL,
SK, CZ, EST, RO,
BU and UKR

[Wit & Faaij, Biomass & Bioenergy, 2010]
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Results - spatial cost
distribution

Production cost (€ GJ-1) for
Grassy crops

PL, PT, CZ, LT, LV,
UK, RO, BU, HU, SL,
SK, EST, UKR

FR, ES, GE, IT, SE,
FI, NO, IE

NL, BE, LU, UK, GR,
DK, CH, AT

< 2,00Low
Cost

Moderate
Cost

2,00 –
3,20

> 3,20High
Cost

Potential Countries

[Wit & Faaij, Biomass & Bioenergy, 2010]
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Crop specific supply curves
• Feedstock potentials

Produced on 65 Mha arable and 24
Mha on pastures (grass and wood)

• Significant difference
between ‘1st and 2nd
generation crops’

• Supply potentials high
compared to demand

2010 (0,78 EJ/yr) and 2020 (1,48
EJ/yr)

[Wit & Faaij, Biomass & Bioenergy, 2010]
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Results – cost-supply curves
Production costs vs.

supply potential
for 2010, 2020 and 2030

Variation areas indicated
around the curves represent
uncertainties and scenario
variables.

Only CEEC cost level increases

[Wit & Faaij, Biomass & Bioenergy, 2010]
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Total annual biomass supply
potential, per European country.

[Wit & Faaij, Biomass & Bioenergy, 2010]
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Total energy potential under
three different crop schemes.

‘Low yielding crops’:
all arable land

available planted
with oil crops.
‘High yielding

crops’: all available
land planted with

grass crops.

[Wit & Faaij, Biomass & Bioenergy, 2010]
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Developments coupled to drivers
Example: the Netherlands
Inputs (fertilizer, machinery, labour and pesticides)
Outputs (wheat, sugarbeet, rapeseed and cattle)
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[De Wit et al, RSER 2011]
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Example:
GHG balance of
combined
agricultural
intensification +
bioenergy
production in
Europe + Ukraine

[Wit et al., GCB-B
Under review]
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[Dornburg et al., 2010
in: IPCC-SRREN, 2011]
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Breakdown of CO2 reduction
options for aviation till 2050

[IIATA, 2010]
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Biobased chemicals; not covered in
current global scenario’s (to date…)!

[Daioglou et al., 2013 (forthcoming)]

Energy demand
for major
Chemicals
towards
2100 with
and without
Biomass
deployment HVC’s,

including
recycling
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Biofuels; they are not
going away.

 Large-scale deployment of advanced biofuels vital to meet the roadmap targets
 Advanced biofuels reach cost parity around 2030 in an optimistic case
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[IEA Biofuels Roadmap]
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A future vision on global
bioenergy markets (2050…)

[GIRACT FFF Scenario project; Faaij, 2008]

250 Mha = 100 EJ
= 5% ag land + pasture
= 1/3 Brazilie

Copernicus Institute
Sustainable Development and Innovation Management[See e.g: van Dam et al., RSER, 2010]


